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Swirling water bells are studied theoretically and experimentally. It is shown theo- 
retically that, if the effects of gravity and the surrounding air are neglected, the shape 
of a swirling water bell will, under certain circumstances, be periodic along the axis 
of rotation. Under ideal conditions, a swirling water bell may thus be infinitely long. 
However, the experiments show that in reality the length of a swirling water bell 
will be limited owing to Kelvin-Helmholtz instabilities. Theoretically calculated 
shapes of swirling water bells are found to agree reasonably well with experimental 
results. 

1. Introduction 
A water bell is an axisymmetric thin sheet of water which moves freely in the 

surrounding air and has a bell-like shape. The dynamics of water bells are character- 
ized by a balance between inertia and surface tension and are modified by gravity 
and the induced motion of the surrounding air. Flows of this kind were first investi- 
gated experimentally in the very thorough studies by Smart (1833, 1834). The 
governing equations for the case when the motion of the surrounding air can be 
neglected, which is a good approximation unless the sheet is very thin and moves 
very rapidly (Wegener & Parlange 1964; Parlange 1967)) were first derived by 
Boussinesq (1869, 1913). The equations given by Boussinesq were written in dimen- 
sionless form by Taylor (19594, who also found an exact solution for the case when 
the gravitational force can be neglected. Taylor ( 1 9 5 9 ~ )  also made experiments and 
the theoretical predictions were in good agreement with the experimental results. 

In'the present work, swirling water bells are investigated theoretically and experi- 
mentally. This kind of flow is used in fan spray nozzles (e.g. see Dombrowski, Hasson 
& Ward 1960). A new application has been suggested by Stenstrom (1971), who 
pointed out that placing a milk bell in a microwave field may be a useful way to 
sterilize milk which eliminates the risk of burning at solid surfaces. In  this application 
one of the key problems is to manipulate the time spent by a liquid particle in the 
portion of space occupied by the microwave field. Rotation of the bell thus provides 
a useful extra degree of freedom to control this parameter. 

The plan of the paper is as follows. The governing equations for a swirling water 
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FIGURE 1. Definition of co-ordinate system. 

bell are derived in Q 2. A perturbation solution of these equations for a slowly rotating 
water bell is given in Q 3. Some general properties of swirling water bells are discussed 
in Q 4. The experimental equipment is briefly described in Q 5.  In  Q 6, the experimental 
results are discussed and some comparisons with theoretical predictions are made. 

2. Governing equations 
Consider a thin swirling sheet of water which is symmetric about the axis of rota- 

tion. A fixed Cartesian co-ordinate system is introduced with the x axis coinciding 
with the axis of rotation, Figure 1 shows the part of the contour of the water bell in 
the x, y plane. The bell starts at the point (0, yo) with a slope given by the angle $,,. 
In the derivation of the equations for the motion of the water, the following quantities 
will be used: 

h, local thickness of the water sheet; 
p, density of the water; 
g, gravitational acceleration, which is assumed to be in the e, direction; 
r, surface tension; 
p ,  pressure difference between the two sides of the sheet; 
A, local radius of curvature of the contour of the water bell in the x, y plane; 
&, total volume flux of water. 

p is defined as posit'ive if the pressure outside the water bell is higher than the pressure 
inside. In this work it will be assumed that the dynamic pressure of the surrounding 
air can be neglected andp is accordingly an imposed constant static pressure difference. 
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It turns out to be convenient to use a natural co-ordinate system (e.g. see Taylor 
1 9 5 9 ~ )  as shown in figure 1. The unit vectors e, and ee define the local tangent plane 
and the unit vector en is in the direction of the normal. The angle # is defined aa the 
angle between e, and e,. The velocity field is given by 

V = ue, + Vee (2 .1)  

and the values of u and v at (0, yo)  are uo and vo. If the thickness of the water sheet is 
assumed to be very small, implying that the velocity is locally approximately con- 
stant across the sheet, the balance of momentum in the e, direction reads 

(2 .2)  
phu2 phv2 cos q% 

-I> + pgh sin q5 - - - = 0. 
217 2rcosq% 

h Y h Y 
-+ 

The first two terms represent the contributions from the surface tension. The third 
and fourth terms give the effects of the pressure difference and the gravitational 
acceleration. The fifth and sixth terms are the centrifugal accelerations due to the 
velocities in the e, and ee directions respectively. Apart from the last term, (2 .2 )  has 
been given by, among others, Taylor ( 1 9 5 9 ~ ) .  If the motion of the ambient air is 
neglected, the only force affecting the energy of the water particles is the gravitational 
force and the energy equation becomes 

ua+v2--2gx = u;+v;. (2 .3 )  

v = YOVO/Y. (2.4) 

R = pQuo/4nr. (2.5) 

Under the same assumption, the angular momentum of the water particles is con- 
served, which implies that 

Following Taylor ( 1 9 5 9 4 ,  a characteristic length scale R is defined as 

Using R as the length scale in the problem means that the force balance is mainly 
governed by inertia and surface tension. In what follows, the following non-dimen- 
sional length variables will be used: 

X = x /R ,  Y = y / R ,  S = 8/R, ( 2 . 6 ~ )  

where s is the dimensional arc length of the contour of the water bell in the x ,  y plane. 
Non-dimensional velocity components are defined a~ 

u = u/uo, v = q u o .  (2.7a, b )  

Using (2.3)-(2.7),  one can, after some algebra, write (2 .2 )  in the following non-dimen- 
sional form : 

asin # y2Y; cos # 
U Y  u Y4 

= 0, 

where 
u = [ 1+ 2 s x  + p(  1 - Yo"/ Y2)p 

is the non-dimensional velocity in the e, direction and 

(2.10a-d) 
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Equation (2,8) wag Arst derived by Kristlansso~ (1875). The non-dimensional para- 
meten d and K ,  which were first used by Taylor ( 1 8 5 9 ~ )  in a somewhat different form, 
mesaure the relative importance of the gravitational acceleration and the pressure 
difference compared with inertia, The parameter y, defined by (2.10c), measures the 
relativs iwportsnce of the rotation, In order to calculate the shape of the swirling 
water bnll, (23) has to be supplemented with the geometrical relation 

dXldY = cot$. (2.11) 

q5 = $,, for X = 0, Y = Yo. (2.12) 

Equations (2,s) and (2.31) are to be solved subject to the initial condition 

In the general Cwe, (2.8) and (2.11) were found to be too complicated to be solved 
analytically. For 6 = K = 0 or 6 = y = 0, one can show that (2.8) and (2.11) can be 
solved in terms of elliptic integrals with rather complicated arguments. However, as 
no significant physical insight appears to emerge from such solutions, (2.8) and (2.11) 
was solved numericslly by using a standard library computer program for a system 
of coupled ncmlinear ordinary differential equations of first order. Some interesting 
physical aspects af the problem, though, can be obtained by perturbing the exact 
solution given by Taylor ( 1 9 5 9 ~ )  for 6 = K = y = 0 for small values of y. Such a 
solution i s  given in the pext section. 

It should once again be pointed out that neglecting the motion of the ambient air 
may be an unacceptable approximation for rapidly moving and thin water sheets. 
This effect was first noted by Taylor (19594  and has been calculated by Wegener & 
Parlange (1964) and Parlange (1967). The latter authors showed that the toroidal 
vorticaj. motion set up by the air enclosed. by the water bell may produce a dynamic 
pressure which, if these vortex motions are sufficientIy strong and the inertia of the 
water sheet is sufficiently weak, may lead to a significant distortion of the shape of 
the water bell. The air outside the bell appears to have a minor effect. Parlange (1967) 
gave a successful approximate method of correcting for the dynamic pressure of the 
enclosed air. Although the method given by Parlange can probably be generalized to 
swirling water bells, this is outside the scope of the present work. 

3. Perturbation solution for small y ,  6 = K = 0 

F'sr S = K = 0, ope can write (2.8) in the following form: 

where the parameters a and /3 are defined by 

p = (1  +y2)4 01 = yyo/p. (3.2a, b )  

Equation (3.1) can be integrated once, giving 

where .Q. is defiaed by 
cosqi = 9Y/[P(Y2-012)f- Y2], 

6 = cosq50(1-Yo). 

It is readily verified that for y = 0 equation (3.3) reduces to the corresponding equa- 
tion given by Taylor ( 1 9 5 9 ~ ) .  The singular cases c0sq5~ = 0 or Yo = l correspond, 
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in the case y = 0, to a flat sheet of water (Taylor 1969a) and are not dealt with in this 
work. The admissible values of Yo deserve some comment. Taylor (iO69bj demon- 
strated experimentally and theoretically, from a sornewbat heuristic mathematical 
model, that a non-swirling water bell cannot exist in a region where the fwal Weber 
number W ,  which in the present notation is defined as 

w u p ,  ( 3 4  

is greater than one. It is shown in the appendix that this condition holds approxi- 
mately in the rotating case as well for reasonable parameter values. fn the non- 
swirling case, the condition W < 1 is equivalent to Y < 1 according to (2.g) and if 
is consequently assumed in this section that Y,  c 1.  

In the following, a small parameter 6 defined by e - y will be used. It is also assumed 
that Yo = O(1).  This restriction can be relaxed at  the cost of some extra algebra. 
However, it turns out that no irnportmt physical properties of the solhtion are lost 
if this assumption is made, 

Some information about the behaviout of the solution of (3.3) and (2 , i i )  can be 
obtained by calculating the values of Y €or which COB$ = 1, i.e. the radii where 
the radial motion of the water particles revemeg. Expanding u and p, defined by 
(3.2a, b ) ,  in powers of E ,  one finds from (3.8) the equation 

YS( Y -t S)U = Y* -I- €a( YO- rj, + 0 ( € 4 ) ,  ( a 4  
which has the following approximate positive solutions: 

and 

The second-order correction term in (3.7) is always positive for Yo CE 1. Thus, for 
realistic boundary conditions, the maximum radius is slightly displaced outwards 
as could have been expected on physical grounds. The root (8.8) is rather interesting 
because it means that the water bell never reaches the axis of rotation, a8 it  does in 
the non-swirling case. This can easily be explained in physical terms. A water particle 
moving inwards will spin up owing to the conservation of angular momentum [see 
(2.4)]. At a distance of order E from the axis of rotation, the swirl velocity will be of 
order unity. This means that the water particle will experience an additional centri- 
fugal force of order unity, which will move the particle outwards. Some further con- 
clusions can be drawn by examining the structure of (2.11) and (3,3). First, dX/dY 
is a function of Y only, which reflects the fact that the motion is reversible in the e, 
direction if 6 = 0. Second, for each value of Y, there are two values of d Y / d X  with 
the same absolute value but different signs. The presence of the two points where the 
radial velocity reverses thus means that the contour of the water bell will be periodic 
along the axis of rotati0n.t Moreover, the upper half of the contour between two 
turning points at the same radial distance will be the mirror image of the lower half, 
This property prevails, as will be discussed in the next section, also for flnite values 
of y and non-zero values of K .  In practice, however, the length of a swirling water 
bell will be limited by Kelvin-Helmholtz instability phenomena. 

t The authors owe this argument to Professor B. J. Anderrjeon. 
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In  order to calculate a perturbation solution of (3.3) and (2.11)) the two regions 
Y = O(1) and Y = O(B) have to be considered separately, because, as was discussed 
above, the physical processes are different in the two regions. For Y = 0(1), the 
zeroth-order solution is the one given by Taylor (1959~): 

X0 = 6 arccosh - -arccosh - [ L:J ( l iY) l  

for 0 < X o  < 8arccosh , Yo < Y < 1-6; (3.9a) 

for aarccosh - < X0 < X,-O(s) ,  O(E) < Y < 1-8. (3.9b) 
( C 0 : d  

Where it has been assumed that $,, > 0, X ,  is defined by 

[ 1 + (1 - 82)) sin C,] 
9 COB (b0 

XN = 9arccosh (3.10) 

and the superscript o denotes the ‘outer’ solution. For Y = O(s), it is convenient to 
use a stretched co-ordinate 5 defined by 

5 =  Y / €  (3.11) 

and to represent X ,  to lowest order, by 

x = f d i + x N ,  (3.12) 

where the superscript i denotes the ‘inner’ solution. From (3.3), (2.11), (3.11) and 
(3.12) one finds, after some algebra, that 

- -  ax‘ 9 5 
dg - - (1 - 9”)t [p - Yi / (  1 - 973, ’ 

which can be integrated to 
9 X i =  - 

(3.13) 

(3.14) 

where X i  is a constant. By matching (3.14) and (3.9b), one finds that X i  is zero. A 
uniformly valid expansion can be written as 

1-Y 6 

< < 1-6. (3.15) 
(1 - 8 2 ) t  

The solutions (3.9~) and (3.15) describe the part of the periodic solution between the 
initial value Y,  and the point where the radial velocity first reverses near the axis of 
rotation. It should be noted that the periodic extension of (3.9a) and (3.15) is not 
uniformly valid for a large number of periods. For the parameter values Y,  = 0.8, 
+o =F 172 and E = 0.20, figure 2 shows a comparison between part of the periodic ex- 
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FIGURE 2. I, Taylor’s (19694 solution; 11, perturbation solution; 
111, numerical solution. 

tension of (3.9a) and (3.15) and a numerical solution of (2.8) and (2.11) with an esti- 
mated error less than 0.5 x The solution given by Taylor (1959a) for e = 0 is 
also shown in figure 2. 

It would be desirable to have the next-order correction to the perturbation solution 
(3.15). However, it  turns out that the next-order correction to the outer solution is 
singular at Y = 1 - 9 and that the same kind of singularity appears for the next-order 
correction for the inner solution at  Y = eyO/(l -a2)+. It can be shown that these 
singularities can be removed by introducing two additional boundary layers of thick- 
ness e2. Unfortunately, the algebra required for calculating these layers and matching 
the solutions in the four different regions is quite involved, therefore the calculation 
of the first-order correction to (3.15) was not attempted. 

4. Some general properties of swirling water bells 
Some illuminating results can be obtained by calculating the values of Y where the 

radial velocity reverses. This was done for S = K = 0 and small values of y in the pre- 
vious section. For the same values of 6 and K but arbitrary values of y,  these values of 
Y are given by the positive roots of the equation 

Y4+29Y3+(92-l-y2) Yz+yaY; = 0, (4.1) 
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where 9 is defined by (3.4). Equation (4.1) follows from (3.3) after inserting q5 = 0 
and using the definitions (3,2a, b )  of a and p. Although the roots of (4.1) can be cal- 
culated exactly, the resulting expressions are rather complicated so only a qualitative 
discussion will be carried out. The discussion will also be restricted to the cm0 
cosq5, = 1, i.e. 19 = 1 -Yo. This means that one root ( Y  = Yo) of (4.1) is given. From 
(2.9) and (3.6) one finds that the necessary condition W c 1 for the existence of B. 

swirling water bell can (see the appendix) be written as 

~ 4 -  (1 + y 2 )  Y ~ + Y ~ Y ;  < 0. (4.2) 

From (4.2) it  follows that one must require that Yo < 1.  It is readily shown that the 
condition Yo < 1 implies that there are two positive roots, or one positive double root, 
of (4.1) a8nd that these roots are enclosed by the roots of the equation W = 1 for all 
values of y .  This means that the class of water bells considered will never break up 
owing to violation of the condition (4.2) and will thus be infinitely long. It i s  also 
readily shown that if 

the water bell will move radially outwards from Y = Yo, X = 0, whereas a motion 
towards the axis of rotation will occur if y2 c Yo. These results quantify the obvious 
fact that a sufficiently strong rotation will fling the water bell outwards. In the limit 
y2 -+ Yo, the water bell degenerates to a straight circular cylinder. 

It should be noted that a swirling water bell need not be confined to the region 
Y < 1, as is the case for a non-swirling water bell. For instance, for large values of y 
one finds that the second root of (4.1) is given approximately by 

Y 2  ’ yo (4.3) 

Y = y-9+O(y-l) .  (4.4) 

It was shown by Lance & Perry (1953), who solved (2.8) and (2.11) numerically for 
y = 0, that the contour of a non-swirling water bell may have cusps if K + 0. In  their 
numerical solutions bifurcation points appear and the computed curves have closed 
loops. Because a moving sheet of water cannot pass through itself, it was concluded 
that the contour of the physical water bell would have a cusp. Lance & Perry (1983) 
also made experiments, the results of which were in reasonable agreement with the 
theoretical predictions. As expected, cusps of this kind appear also for swirling water 
bells. Figures 3(a) and ( b )  show two numerical solutions of (2.8) and (2.11) for 6 = 0 
but non-zero values of K. The values of y, q50 and Yo are the same as for the numerical 
solution shown in figure 2. The periodic properties of the solutions prevail also for 
non-zero values of K, as can be expected on physical grounds. 

5. Experimental procedure 
Swirling water bells were produced by using the apparatus shown in figure 4. 

The apparatus was made of brass. Parts A ,  B and C are rotating and parts D and E 
are fixed. Part B is a turbowheel which is driven pneumatically by an air jet which, 
in turn, is driven by a small compressor. Part B’ is an axial seal. The water flow is 
shown by thick dark arrows. In the upper part of part A ,  there are twelve vertical 
channels with square cross-sections. Between the lower parts of parts A and C, there 
is a narrow annular slit. The apparatus works aa follows. Non-rotating water enters 
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FIQURE 4. Sketch of apparatus used t o  produce swirling water bells. 

from above into the cavity in the non-rotating part 1. The water then enters the 
rotating vertical channels in part A and is thereby spun up. Thereafter the rotating 
water enters the narrow annular slit between the lower parts of parts A and C, comes 
out of this slit and flows on the lower part of part A and &ally leaves part A at a 
sharp edge. In this way the swirl velocity of the water sheet can be controlled rather 
well. Part A can be displaced vertically relative to part C, whereby the width of the 
annular slit can be varied from 0.2 to 0.5 mm. The diameter of part A at  the sharp 
edge is 32 mm and the distance from the axis of symmetry to the slit is 10 mm. By 
shielding the turbowheel from the water bell, it was found that the air jet which drives 
the turbowheel did not affect the shape of the water bell. The rotation rate waa 
measured with an optical Ono Sokki HT-430 tachometer. The volume flux waa 
measured with a Floscan 300- 1 fluxmeter. 

In order to investigate the flow leaving the channels in part A and entering the 
cavity between the parts A and C, an apparatus was made of Plexiglas with identical 
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Volume Width 
fiUX of R U O  

Q (ma//e) slit (m) (4 (m/s, Y b K y o  bJ 
Figure 6 (a) 2 . 8 ~  3 x  7.7 x lo-' 2.6 0.64 0.12 0.0 0.21 &71 

Figure 5 (b) 2 . 8 ~  4~ 10-4 6.1 x lo-' 2.0 0.66 0.16 0.0 0.26 471 
Figure 5 (c) 1 . 9 ~  3 x  10-4 3 . 4 ~  lo-' 1.7 0.16 1.1 0.0 0.48 &71 

TABLE 1 

parts A and C. The water was partially marked with dye and the flow was observed 
visually in the light from a stroboscope, which was tuned to the rotation frequency. 
A very regular axial flow was observed, which showed that the water film was spun 
up in a well-controlled manner. The width of the slit between parts A and B could 
not be adjusted very accurately with the Plexiglas apparatus and in the experiments 
to be described the brass apparatus was used. 

When using the previously described apparatus, there will, unfortunately, be a 
small but non-negligible momentum loss due to viscous effects on the motion of the 
sheet before it leaves the sharp edge. This means that if one calculates uo and o,, at 
the sharp edge by using the mean axial and swirl velocities in the slit and assumes that 
the flow is inviscid, cf. (2.4) and (2.3), an error will be introduced. The viscous momen- 
tum loss will obviously be significantly smaller for the swirling motion than for the 
meridional motion. The meridional momentum loss could be corrected for by measur- 
ing the thickness of the sheet at some suitable position, as was done by optical methods 
by Goring (1969) and Dombrowski et al. (1960). Such measurements were, however, 
not made in the present investigation. The order of magnitude of the meridional 
momentum loss can be estimated by comparing the shape of a non-swirling water 
bell from an experiment with the shape obtained by solving (2.8) and (2.11) numerically 
for y = K = 0 and using the previous estimate for uo in the definitions of R and 6. 
It was found that the calculated water bell was typically 16-25y0 larger than the 
experimental one. As expected, the error was found to decrease if the Reynolds 
number based on the mean velocity in the slit and the width of the slit increased. If 
uo was adjusted to make the length (or diameter) of the calculated water bell agree 
with the experimental value, the theoretical and experimental shapes agreed to 
within less than 5%. The remaining deviation is presumably due to the dynamic 
pressure of the enclosed air. In  the experiments made by Goring (1969), this effect is 
very important as was shown by Parlange (1967), who calculated the shape of the 
water bells in Goring's experiments very accurately by using a simplified model for 
the motion of the enclosed air. By comparing the parameter ranges in the present 
experiments and those made by Goring (1969), one finds that the effect of the moving 
enclosed air on the shape of the water bell should indeed be of the order of a few per 
cent. 

6. Experimental results 
Photographs from three experiments are shown in figures 6 (a), (b) and c (plate 1). 

The parameter values for the experiments are given in table 1. The viscous momentum 
loss, which was discussed in the previous section, has been neglected when calculating 
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FIUURE 6. I, (a) shape of the bell in figure 6 (a) and ( b )  shape of the bell in figure 6 ( b )  ; 
11, numerical solution of (2.8) and (2.11) for the parameter values in table 1. 
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2- 

FIGURE 7. Definition of co-ordinate for describing the motion of a free edge. 

these parameter values. The photographs show that the lengths of the water bells 
are obviously limited by a Kelvin-Helmholtz instability, which causea the bells in 
figures 5 (a) and (b)  to break up after approximately one-quarter of the second period 
and the bell in figure 5(c) after approximately one-quarter of the third period. It 
should be noted that the velocity of the water sheet in figure 6 ( c )  is slower than that 
of the sheets in figures 5(a)  and ( a ) .  This makes the bell in figure 5(c )  more stable. 
The lower part of the bell is, however, strongly distorted by wave motions. Apart 
from such local wave motions and some very weak global oscillations, which were 
obviously caused by the rotating parts of the apparatus, the bells were in all cases 
steady and did last as long as desired. No systematic measurements of breakup lengths 
were made. 

The shapes of the water bells in figures 5(a)  and (b )  are compared with numerical 
solutions of (2.8) and (2.11), for the parameter values given in table 1 in figures 6 ( a )  
and (b ) .  The agreement between theory and experiment is reasonable. For reasons 
that will be discussed in a moment, the shape of the bell in figure S(c) could not be 
predicted very well. The calculated bells shown in figures 6 ( a )  and (b )  are somewhat 
longer than the experimental ones. This is a consequence of the momentum loss caused 
by the contact of the water sheet with the solid surface, which has not been accounted 
for in the numerical solution. This error, which is relatively large for the water bell 
in figure 5 ( c ) ,  will give a reference velocity u,, at the sharp edge which is too large in 
the numerical solution. The reference length R, defined by (2.5), will thus also be too 
large, giving a larger length scale for the calculated water bell than for the experi- 
mental one. However, the experimental and theoretical maximum diameters in 
figure 6 ( b )  are roughly the same and in figure 6 (a)  the experimental maximum dia- 
meter is larger than the theoretical one, which would contradict the conclusion that 
R i s  too large. This can be explained by the fact that, because the value af u,, uded in 
the calculations is too large, the value of y will be too small as the viscous effects on 
the swirl velocity are certainly significantly smaller than those on the meridional 
velocity. Too small a value of y gives, of course, a decreased maximum diameter. 

Professor Bengt Joel Andersson made it possible, by generously providing resources 
in his laboratory, to carry out the experimental part of this investigation. We are 
very grateful for this support. We are also indebted to him for many clarifying and 
stimulating discussions on the subject. 

Appendix 
Taylor (1959b) derived a condition for a free edge of a moving sheet of water to 

remain stationary in space by calculating how rapidly the surface tension will pull 
the free edge backwards. If the radial convection velocity of the sheet is in the oppo- 
site direction and has the same magnitude as the velocity of the edge caused by the 
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action of the surface tension, the edge will, according to Taylor (1959b), remain 
stationary in space. The model is somewhat crude as it does not account for the fact 
that water drops are shed periodically from the edge. However, the model describes 
the experiments made by Taylor (19593) very well and it appears that the suggested 
physical process indeed determines the location of a free edge. 

For a rotating sheet, Taylor's (1959b) mathematical model can be modified as 
follows. If the distance from the axis of rotation to the edge is large compared with 
the thickness of the sheet and it is assumed that the displacement of the edge is of 
the same order of magnitude as the thickness of the sheet, one can assume that the 
swirl velocity is approximately constant in the neighbourhood of the edge. The only 
dynamical effect of the swirl velocity near the edge will then be an approximately 
constant centrifugal force. Using the notation of 5 2, one has the following dimensional 
equation of motion for a rotating free edge without any radial velocity (see figure 6 b )  : 

where t is the time, m is the mass per unit length along the periphery of the sheet, v 
is the swirl velocity of the edge and ye is the distance from the edge to the axis of 
rotation. The equation of continuity is 

m = phz, (A 2 )  

where h is the thickness of the sheet near the edge and p is the density of the water. 
Following Taylor (1959b), it is assumed that the motion of the edge is such that h is 
approximately constant. From (A 1) and (A 2 )  one finds 

d?z+ dz a (z) + A z = B ,  

where the positive constants A and B are defined by 

The solution of (A 3) is given by (see Kamke 1959, p. 681) 

where C is a constant of integration and the initial condition z(0)  = 0 has been used. 
For dzldt to be finite for t = 0, C has to be zero. One finds that 

z = Bat - iAta. (A 6) 

Superimposing a radial velocity u, which can be done under the previously stated 
assumptions without significantly changing the dynamics, and introducing the non- 
dimensional length and time variables Z and T ,  defined by 

z = Zh, t = hT/u, (A 7a, b )  

one finds from (A 6), (A 4a, b) and (A 7a,  b )  that 

ya W'Rih Ta. 
z =  (W' - l )T-  

6Y! 
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The local Weber number W in (A 8) is defined by 
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W = 2T/phu2 (A 9) 

and R is defined by (2.5). Usually h/y, is very small and the remaining factors in the 
coefficient of T2 in (A 8) are, under normal conditions, of order unity. This means 
that the last term in (A 8) will be important for large values of T only. However, the 
success of Taylor's (1959 b) model indicates that the time scale for the periodic shed- 
ding of drops is h/u. The last term in (A 8) is therefore likely to remain small and the 
local criterion W < 1 for the existence of a water bell can be expected to hold approxi- 
mately in the rotating case as well, a t  least for very thin sheets. It should be noted 
that the governing equations (2.8) and (2.1 1) as such may have solutions in regions 
where W > 1. 
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(C) 

FIGURE 5.  Photographs of swirling water bells. The parameter values are given in table 1. 
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